Answer:
[tex]\large \boxed{\text{0.31 times the original pressure}}[/tex]
Explanation:
To solve this problem, we can use the Combined Gas Laws:
[tex]\dfrac{p_{1}V_{1} }{n_{1}T_{1}} = \dfrac{p_{2}V_{2} }{n_{2}T_{2}}[/tex]
Data:
p₁ = p₁; V₁ = 0.47 L; n₁ = n₁; T₁ = 30 °C
p₂ = ?; V₂ = 1.55 L; n₂ = n₁; T₂ = 35 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = (30 + 273.15)K = 303.15 K
T₂ = (35 + 273.15)K = 308.15 K
(b) Calculate the new pressure
[tex]\begin{array}{rcl}\dfrac{p_{1}V_{1}}{n_{1} T_{1}} & = & \dfrac{p_{2}V_{2}}{n_{2} T_{2}}\\\\\dfrac{p_{1}\times \text{0.47 L}}{n _{1}\times \text{303.15 K}} & = &\dfrac{p_{2}\times\text{1.55 L}}{n _{1}\times \text{308.15 K}}\\\\1.55 \times 10^{-3}p_{1} & = &5.030 \times 10^{-3}{p_{2}}\\p_{2} & = & \dfrac{1.55}{5.030} \times p_{1}\\\\ & = & 0.31p_{1}\\\end{array}\\\text{The new pressure is $\large \boxed{\textbf{0.31 times the original pressure}}$}[/tex]