Respuesta :
Answer:
1) [tex]\frac{dy}{dt}=2.5-\frac{3y}{2t+100}[/tex]
2) [tex]y(t)=(50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}[/tex]
3) 98.23lbs
4) The salt concentration will increase without bound.
Step-by-step explanation:
1) Let [tex]y[/tex] represent the amount of salt in the tank at time t, where t is given in minutes.
Recall that: [tex]\frac{dy}{dt}=rate\:in-rate\:out[/tex]
The amount coming in is [tex]0.5\frac{lb}{gal}\times 5\frac{gal}{min}=2.5\frac{lb}{min}[/tex]
The rate going out depends on the concentration of salt in the tank at time t.
If there is [tex]y(t)[/tex] pounds of salt and there are [tex]100+2t[/tex] gallons at time t, then the concentration is: [tex]\frac{y(t)}{2t+100}[/tex]
The rate of liquid leaving is is 3gal\min, so rate out is [tex]=\frac{3y(t)}{2t+100}[/tex]
The required differential equation becomes:
[tex]\frac{dy}{dt}=2.5-\frac{3y}{2t+100}[/tex]
2) We rewrite to obtain:
[tex]\frac{dy}{dt}+\frac{3}{2t+100}y=2.5[/tex]
We multiply through by the integrating factor: [tex]e^{\int \frac{3}{2t+100}dt }=e^{\frac{3}{2} \int \frac{1}{t+50}dt }=(50+t)^{\frac{3}{2} }[/tex]
to get:
[tex](50+t)^{\frac{3}{2} }\frac{dy}{dt}+(50+t)^{\frac{3}{2} }\cdot \frac{3}{2t+100}y=2.5(50+t)^{\frac{3}{2} }[/tex]
This gives us:
[tex]((50+t)^{\frac{3}{2} }y)'=2.5(50+t)^{\frac{3}{2} }[/tex]
We integrate both sides with respect to t to get:
[tex](50+t)^{\frac{3}{2} }y=(50+t)^{\frac{5}{2} }+ C[/tex]
Multiply through by: [tex](50+t)^{-\frac{3}{2}}[/tex] to get:
[tex]y=(50+t)^{\frac{5}{2} }(50+t)^{-\frac{3}{2} }+ C(50+t)^{-\frac{3}{2} }[/tex]
[tex]y(t)=(50+t)+ \frac{C}{(50+t)^{\frac{3}{2} }}[/tex]
We apply the initial condition: [tex]y(0)=0[/tex]
[tex]0=(50+0)+ \frac{C}{(50+0)^{\frac{3}{2} }}[/tex]
[tex]C=-12500\sqrt{2}[/tex]
The amount of salt in the tank at time t is:
[tex]y(t)=(50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}[/tex]
3) The tank will be full after 50 mins.
We put t=50 to find how pounds of salt it will contain:
[tex]y(50)=(50+50)- \frac{12500\sqrt{2} }{(50+50)^{\frac{3}{2} }}[/tex]
[tex]y(50)=98.23[/tex]
There will be 98.23 pounds of salt.
4) The limiting concentration of salt is given by:
[tex]\lim_{t \to \infty}y(t)={ \lim_{t \to \infty} ( (50+t)- \frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }})[/tex]
As [tex]t\to \infty[/tex], [tex]50+t\to \infty[/tex] and [tex]\frac{12500\sqrt{2} }{(50+t)^{\frac{3}{2} }}\to 0[/tex]
This implies that:
[tex]\lim_{t \to \infty}y(t)=\infty- 0=\infty[/tex]
If the tank had infinity capacity, there will be absolutely high(infinite) concentration of salt.
The salt concentration will increase without bound.