find the length of side x in simplest form with a rational denominator

Given:
The figure contains a right triangle.
The two angles of the triangle are 45° each.
The length of one leg is 3 units.
The length of the hypotenuse is x units.
We need to determine the value of x.
Value of x:
The value of x can be determined using the formula,
[tex]cos \ \theta=\frac{adj}{hyp}[/tex]
where [tex]\theta=45^{\circ}[/tex], adj = 3 and hyp = x.
Substituting these values, we get;
[tex]cos \ 45^{\circ}=\frac{3}{x}[/tex]
Simplifying, we get;
[tex]x=\frac{3}{cos \ 45^{\circ}}[/tex]
[tex]x=\frac{3}{\frac{\sqrt{2}}{2}}[/tex]
[tex]x=3 \times \frac{2}{\sqrt{2}}[/tex]
[tex]x=\frac{6}{\sqrt{2}}[/tex]
Thus, the value of x is [tex]x=\frac{6}{\sqrt{2}}[/tex]