[tex]f(t)=\begin{cases}-1&\text{for }0\le t<1\\1&\text{for }t\ge1\end{cases}[/tex]
Write [tex]f(t)[/tex] in terms of the unit step function [tex]u(t)[/tex]:
[tex]f(t)=-1(u(t)-u(t-1))+1u(t-1)=2u(t-1)-u(t)[/tex]
where
[tex]u(t)=\begin{cases}1&\text{for }t\ge0\\0&\text{for }t<0\end{cases}[/tex]
Then the Laplace transform of [tex]f(t)[/tex], denoted [tex]F(s)[/tex], is
[tex]F(s)=\displaystyle\int_0^\infty f(t)e^{-st}\,\mathrm dt[/tex]
[tex]F(s)=\displaystyle2\int_1^\infty e^{-st}\,\mathrm dt-\int_0^\infty e^{-st}\,\mathrm dt[/tex]
[tex]\implies F(s)=\dfrac{2e^{-s}}s-\dfrac1s=\dfrac{2e^{-s}-1}s[/tex]