An element with a mass of 840 grams decays by 7% per minute. To the nearest minute, how long will it be until there are 200 grams of the element remaining?

Respuesta :

The element takes 19.78 minutes to reach 200 grams, if an element with a mass of 840 grams decays by 7% per minute.

Step-by-step explanation:

The given is,

                  Mass of an element.

                  Decays by 7% per minute.

Step: 1

                 Formula to calculate the mass of element with an decay rate after some time period,

                                [tex]F = P(1-r)^{t}[/tex]..........................(1)

                 Where, F - Mass of element after t period

                              P - Mass of element at initial

                               r - Rate of decay of element

                               t - Time in minutes

Step: 2

                 From the give values,

                            F = 200 grams

                            P = 840 grams

                             r = 7 % per minute

                Equation (1) become,

                         [tex]200 = 840 (1-0.07)^{t}[/tex]

                          [tex]\frac{200}{840} = (1-0.07)^{t}[/tex]

                 [tex]0.238095= (0.93)^{t}[/tex]

               Take log on both sides,

                 ㏒ 0.238095 = (t) ㏒ 0.93

                   -0.6232493 = (t) (-0.03151705)

                                     [tex]t = \frac{ -0.6232493 }{ -0.03151705 }[/tex]            

                                        =  19.77498

                                     t ≅ 19.78 minutes

Result:

              The element takes 19.78 minutes to reach 200 grams, if an element with a mass of 840 grams decays by 7% per minute.

An element with a mass of 840 grams decays by 7% per minute. To the nearest minute, how long will it be until there are 200 grams of the element remaining?

Answer: 20

ACCESS MORE