Respuesta :
Answer:
a) [tex]F_x = F_y = F_x = 0 \ \ N[/tex]
b) [tex]F_x= - 0.05718 \ N ; F_y = 0 \ N ; F_z= 0 \ N[/tex]
Explanation:
Given that:
q = -79 μC
q = - 79×10⁻⁶ C
d = 1.53 cm
d = 0.0153 m
I = 34 A
v = 3.49×10⁵ m/s
[tex]\bar{V} = v \hat{j}[/tex]
The force on charge q is given by
[tex]\bar{ F } = q (\bar {v} * \bar{B})[/tex]
a) At midway (A) , the B will be :
[tex]\bar{B} =\bar{B_1} + \bar{B_2}[/tex]
[tex]B_1[/tex] and [tex]B_2[/tex] will be equally the same in respect to their magnitude but opposite direction at point A.
So; [tex]\bar{|B_1|} = |B_2| = \frac{\mu_oI}{2 \pi d/2}[/tex]
where [tex]|B| =0[/tex]
∴ [tex]\bar {|F|} = 0[/tex]
∴ [tex]F_x = F_y = F_x = 0 \ \ N[/tex]
b)
At a distance d/2 cm above the upper wire:
[tex]\bar{B} =\bar{B_1} + \bar{B_2}[/tex]
where:
[tex]B_1 =B_2 = \frac{\mu_o I }{2 \pi ( d + d/2 )}[/tex] ; upward to the plane of paper
∴ [tex]\frac{\mu_o I}{2 \pi} \ \ [\frac{2}{3/d} +\frac{2}{d}] \ \ \hat{k}[/tex]
B = [tex]\frac{\mu_o I}{ \pi \ d} \ \ [\frac{1}{3} +1] \ \ \hat{k}[/tex]
B = [tex]\frac{\mu_o I}{ \pi \ d} \ [\frac{4}{3} ] \ \hat{k}[/tex]
B = [tex]\frac{7 \pi * 10^{-7} *34}{\pi*0.0153}*\frac{4}{3} \ \hat{k}[/tex]
B = 2.074 × 10⁻³T [tex]\hat {k}[/tex]
∴ [tex]\bar {F} = q ( \bar{v} + \bar {B})[/tex]
[tex]\bar {F} = q ( \bar{v} + B)j*k\\\\\bar {F} = q ( \bar{v} + B) \bar {i}[/tex]
[tex]F = -79*10^{-6}*3.49*10^5*2.074*10^{-3}[/tex]
[tex]F = - 0.05718 \ N \ \hat {i}[/tex]
[tex]F_x= - 0.05718 \ N ; F_y = 0 \ N ; F_z= 0 \ N[/tex]