Answer:
a) αA = 4.35 rad/s²
αB = 1.84 rad/s²
b) t = 3.7 rad/s²
Explanation:
Given:
wA₀ = 240 rpm = 8π rad/s
wA₁ = 8π -αA*t₁
The angle in B is:
[tex]\theta _{B} =4\pi =\frac{1}{2} \alpha _{B} t_{1}^{2} =\frac{1}{2} (\frac{r_{A} }{r_{B} } )^{3} \alpha _{A} t_{1}^{2}=\frac{1}{2} (\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}^{2}[/tex]
[tex]\alpha _{A} =8\pi (\frac{0.2}{0.15} )^{3} =59.57rad[/tex]
[tex]w_{B,1} =\alpha _{B} t_{1}=(\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}=0.422\alpha _{A} t_{1}[/tex]
The velocity at the contact point is equal to:
[tex]v=r_{A} w_{A} =0.15*(8\pi -\alpha _{A} t_{1})=1.2\pi -0.15\alpha _{A} t_{1}[/tex]
[tex]v=r_{B} w_{B} =0.2*(0.422\alpha _{A} t_{1})=0.0844\alpha _{A} t_{1}[/tex]
Matching both expressions:
[tex]1.2\pi -0.15\alpha _{A} t_{1}=0.0844\alpha _{A} t_{1}\\\alpha _{A} t_{1}=16.09rad/s[/tex]
b) The time during which the disks slip is:
[tex]t_{1} =\frac{\alpha _{A} t_{1}^{2}}{\alpha _{A} t_{1}} =\frac{59.574}{16.09} =3.7s[/tex]
a) The angular acceleration of each disk is
[tex]\alpha _{A}=\frac{\alpha _{A} t_{1}}{t_{1} } =\frac{16.09}{3.7} =4.35rad/s^{2} (clockwise)[/tex]
[tex]\alpha _{B}=(\frac{0.15}{0.2} )^{3} *4.35=1.84rad/s^{2} (clockwise)[/tex]