Two friction disks A and B are brought into contact when the angular velocity of disk A is 240 rpm counterclockwise and disk B is at rest. A period of slipping follows and disk B makes 2 revolutions before reaching its final angular velocity. Assuming that the angular acceleration of each disk is constant and inversely proportional to the cube of its radius, determine (a) the angular acceleration of each disk, (b) the time during which the disks slip.

Respuesta :

Answer:

a) αA = 4.35 rad/s²

αB = 1.84 rad/s²

b) t = 3.7 rad/s²

Explanation:

Given:

wA₀ = 240 rpm = 8π rad/s

wA₁ = 8π -αA*t₁

The angle in B is:

[tex]\theta _{B} =4\pi =\frac{1}{2} \alpha _{B} t_{1}^{2} =\frac{1}{2} (\frac{r_{A} }{r_{B} } )^{3} \alpha _{A} t_{1}^{2}=\frac{1}{2} (\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}^{2}[/tex]

[tex]\alpha _{A} =8\pi (\frac{0.2}{0.15} )^{3} =59.57rad[/tex]

[tex]w_{B,1} =\alpha _{B} t_{1}=(\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}=0.422\alpha _{A} t_{1}[/tex]

The velocity at the contact point is equal to:

[tex]v=r_{A} w_{A} =0.15*(8\pi -\alpha _{A} t_{1})=1.2\pi -0.15\alpha _{A} t_{1}[/tex]

[tex]v=r_{B} w_{B} =0.2*(0.422\alpha _{A} t_{1})=0.0844\alpha _{A} t_{1}[/tex]

Matching both expressions:

[tex]1.2\pi -0.15\alpha _{A} t_{1}=0.0844\alpha _{A} t_{1}\\\alpha _{A} t_{1}=16.09rad/s[/tex]

b) The time during which the disks slip is:

[tex]t_{1} =\frac{\alpha _{A} t_{1}^{2}}{\alpha _{A} t_{1}} =\frac{59.574}{16.09} =3.7s[/tex]

a) The angular acceleration of each disk is

[tex]\alpha _{A}=\frac{\alpha _{A} t_{1}}{t_{1} } =\frac{16.09}{3.7} =4.35rad/s^{2} (clockwise)[/tex]

[tex]\alpha _{B}=(\frac{0.15}{0.2} )^{3} *4.35=1.84rad/s^{2} (clockwise)[/tex]

ACCESS MORE