Moving from boron to carbon, the intensity of the bulb Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. because Z increases from Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. to Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms.. The thickness of the frosting Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. because the core electron configuration is the same for both atoms.

Respuesta :

Complete Question

The complete Question is shown on the first and second uploaded image

     

Answer:

The underlined words are the answers

Part A

Moving from boron to carbon, the intensity of the bulb Increases  because Z increases from 5 to 6 , The thickness of the frosting stays the  same because the core electron configuration is the same for both atoms

Part B

Moving from boron to aluminum the intensity of the bulb Increases because Z increases  from 5 to 13 . The thickness of the frosting also increases because Al has the core configuration of Ne, while B has the core configuration of He

Explanation:

Here Z denotes the atomic number

        Ne denoted the element called Neon and its electronic  configuration is

                     [tex]1s^2 \ 2s^2 \ 2p^6[/tex]

    He denoted the element called Helium  and its electronic  configuration is

                     [tex]1s^2[/tex]

     B denoted the element called Boron   and its electronic  configuration is

                [tex]1s^2 \ 2s^2\ 2p^1[/tex]

Looking at its electronic configuration we can see that the core is He

I,e              [tex][He]\ 2s^2 2p^1[/tex]

Al denoted the element called Aluminium  and its electronic configuration is    

             [tex]1s^2 \ 2s^2 \ 2p^2 \ 3s^2 \ 3p^1[/tex]

Looking at its electronic configuration we can see that the core is Ne

I,e              [tex][Ne]\ 3s^2 \ 3p^1[/tex]

               

Ver imagen okpalawalter8
ACCESS MORE
EDU ACCESS
Universidad de Mexico