Given the three function below, which expression equals (z\circ h \circ s)(x)(z∘h∘s)(x)? h(x)=4x\hspace{50px}s(x)=2^{x}\hspace{50px}z(x)=\frac{3}{x-8} h(x)=4xs(x)=2 x z(x)= x−8 3 ​

Respuesta :

Answer:

[tex](z\circ h\circ s)(x)=\dfrac{3}{4(2^{x})-8}[/tex]          

Step-by-step explanation:

We are given the following in the question:

[tex]h(x) = 4x\\s(x) 2^{x}\\z(x) = \dfrac{3}{x-8}[/tex]

We have to evaluate:

[tex](z\circ h\circ s)(x)[/tex]

Evaluation:

[tex](z\circ h\circ s)(x)\\=z(h(s(x)))\\\\=z(h(2^{x}))\\\\=z(4(2^{x}))\\\\\Rightarrow (z\circ h\circ s)(x)=\dfrac{3}{4(2^{x})-8}[/tex]

is the required function.