Respuesta :
Answer:
Center: (0 , 0); Vertices: ([tex]-\sqrt{7}[/tex] , 0) and ([tex]\sqrt{7}[/tex] , 0); Foci: ([tex]-\sqrt{5}[/tex] , 0) and ([tex]\sqrt{5}[/tex] , 0) ⇒ 2nd answer
Step-by-step explanation:
The standard form of the equation of an ellipse with center (0 , 0 ) and major axis parallel to the x-axis is [tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1[/tex] , a > b , where
- The coordinates of the vertices are (± a , 0)
- The coordinates of the foci are (± c , 0), and c ² = a² - b²
∵ The equation of the ellipse is 2x² + 7y² = 14
- Divide both sides by 14 to make the right hand side = 1
∴ [tex]\frac{2x^{2}}{14}+\frac{7y^{2}}{14}=\frac{14}{14}[/tex]
- Simplify the fractions
∴ [tex]\frac{x^{2}}{7}+\frac{y^{2}}{2}=1[/tex]
Compare it with the form of the ellipse above
∴ The center of the ellipse is (0 , 0)
∴ a² = 7
- Take √ for both sides
∴ a = ± [tex]\sqrt{7}[/tex]
∴ b² = 2
- Take √ for both sides
∴ b = ± [tex]\sqrt{2}[/tex]
∵ The vertices of it are (a , 0) and (-a , 0)
∴ Its vertices are ([tex]\sqrt{7}[/tex] , 0) and ([tex]-\sqrt{7}[/tex] , 0)
∵ c² = a² - b²
∵ a² = 7 and b² = 2
∴ c² = 7 - 2
∴ c² = 5
- Take √ for both sides
∴ c = ± [tex]\sqrt{5}[/tex]
∵ The foci of it are (c , 0) and (-c , 0)
∴ Its foci are ([tex]\sqrt{5}[/tex] , 0) and ([tex]-\sqrt{5}[/tex] , 0)