Answer:
Perimeter of the triangle = 10.48 unit
Step-by-step explanation:
From the ΔABC
∠A = 90°
∠B = 25°
∠C = 180-90-25 = 65°
AB = 4 unit
From the sine rule
[tex]\frac{4}{\sin65} = \frac{AC}{\sin25} = \frac{BC}{\sin65}[/tex]
[tex]AC = 4 (\frac{\sin25}{\sin65} )[/tex]
AC = 1.86 unit
BC = [tex]4 (\frac{ \sin90}{\sin60} )[/tex]
BC = 4.62 unit
Perimeter of the triangle = AB + BC + CA
Perimeter of the triangle = 4 + 4.62 + 1.86
Perimeter of the triangle = 10.48 unit