Respuesta :
The values of (x,y)=(4,4). In terms of x, the value y(x)=8-x, If the given equation is [tex]x-y=0[/tex] and [tex]x+y=8[/tex].
Step-by-step explanation:
The given is,
[tex]x-y=0[/tex]...............................(1)
[tex]x+y=8[/tex]...............................(2)
Step:1
Solution can be obtained by Elimination method,
Equation (1) is multiplied by (-1) ( Eqn (1) × -1 )
[tex]-x+y=0[/tex]..............................(3)
Substrate the equation (1) and equation (3),
[tex]-x+y=0[/tex]
[tex]x+y=8[/tex]
( - )
[tex](-x-x)+(y-y)=(0-8)[/tex]
[tex](-2x)=-8[/tex]
[tex]-2x = -8[/tex]
we can cancel the minus because it is available in both sides,
[tex]2x=8[/tex]
[tex]x = \frac{8}{2}[/tex]
x = 4
From the value of x, Equation (2) becomes,
[tex]x+y=8[/tex]
[tex]4+y=8[/tex]
[tex]y = 8-x[/tex] (Value of y in terms of x)
Where, x = 4
[tex]y = 8-4[/tex]
[tex]y =4[/tex]
Step:2
Check for solution,
[tex]x+y=8[/tex].....................................(2)
Substitute the values of x and y,
4 + 4 = 8
8 = 8
Result:
The values of (x,y)=(4,4). In terms of x, the value y(x)=8-x, where x=4. If the given equation is [tex]x-y=0[/tex] and [tex]x+y=8[/tex].