a rectangle has an area of 135 square meters and has a width that is 6 meters shorter than its length what is the perimeter of the rectangle​

Respuesta :

Answer:

Step-by-step explanation:

length = x m

Width = (x - 6) m

Area = 135 sq.m

length * width = 135

x*(x-6) = 135

x*x - x*6 -135 = 0

x²-  6x - 135 = 0

x² - 15x + 9x - 9*15 = 0

x(x - 15) + 9(x-15) = 0

(x-15)(x + 9) = 0

x - 15 = 0  

{x+9=0 is ignored because measurement cannot be a negative number}

x= 15

length = 15 m

width = x - 6 = 15 - 6 = 9 m

Perimeter = 2*(length + width)

                 = 2*(15 + 9) = 2 * 24 = 48 m

Answer:

The perimeter of the rectangle is 48 m.

Step-by-step explanation:

Given:

Area of rectangle=153 sq.m

and

width=b and length=l

b=(l-6)  m

To find :

Perimeter of given rectangle

Solution:

we know that the

area of rectangle is given by,

[tex]l*b=135[/tex]

[tex]l(l-6)=135[/tex]

[tex]l^2-6l-135[/tex]=0

solve this quadratic equation,

we get ,

[tex](l+9)(l-15)[/tex]

length will not be negative

therefore l=15 m

hence,[tex]b=l-6[/tex]

[tex]b=15-6[/tex]

b= 9 m

Now perimeter is

[tex]2(l+b)[/tex]

=[tex]2(15+9)[/tex]

=48 m