The volume of water and a rectangle swimming pool can be modeled by the function v(x)=x^3+13x-210. If the depth of the pool is given by the expression x-3, what are the expressions that represent the width and length of the pool?

Respuesta :

Answer:

Required,

[tex]L=\frac{3+\sqrt{37}}{2}-\frac{144}{x-3}[/tex]

[tex]W=\frac{3-\sqrt{37}}{2}-\frac{144}{x-3}[/tex]

Step-by-step explanation:

Given volume and depth respectively,

[tex]V(x)=x^3+13x-210[/tex] and [tex]x-3[/tex]

To find length and width of the rectanglular swiming pool we know,

Volume=length[tex]\times[/tex]height[tex]\times[/tex]depth.

Let depth=D=x-3, length=L, width=W, then

[tex]V=DLW[/tex]

[tex]x^3+13x-210= LW(x-3)[/tex]

[tex]LW=\frac{x^3+13x-210}{x-3}[/tex]

After divide we will get [tex]x^2-3x-22[/tex] with remainder -144.

Thus,

[tex]x^3+13x-210=(x^2-3x-22)(x-3)-144=(x-3)LW[/tex]

Now to find root of,

[tex]x^2-3x-144=\frac{3\pm\sqrt{9+88}}{2}=\frac{3\pm \sqrt{37}}{2}[/tex]

Thus,

[tex]L=\frac{3+\sqrt{37}}{2}-\frac{144}{x-3}[/tex]

[tex]W=\frac{3-\sqrt{37}}{2}-\frac{144}{x-3}[/tex]