Given:
m∠WYX = 20°
m∠XYZ = 135°
To find:
The measure of arc WXZ.
Solution:
m∠WYZ = m∠WYX + m∠XYZ
m∠WYZ = 20° + 135°
m∠WYZ = 155°
The measure of inscribed angle is half of the intercepted arc.
[tex]$\Rightarrow m \angle WYZ = \frac{1}{2} m (ar WXZ)[/tex]
[tex]$\Rightarrow 155^\circ = \frac{1}{2} m (ar WXZ)[/tex]
Multiply by 2 on both sides.
[tex]$\Rightarrow 2\times 155^\circ = 2 \times \frac{1}{2} m (ar WXZ)[/tex]
[tex]$\Rightarrow 310^\circ = m (ar WXZ)[/tex]
The measure of arc WXZ IS 310°.