Respuesta :

Answer:

see below

Step-by-step explanation:

Prove : cos²(A-B)-sin²(A+B)=cos2Acos2B

LHS,

cos²(A-B) - sin²(A+B)     (expand using double angle identities)

= [tex]\frac{1 + cos [2(A-B)]}{2} - \frac{1 - cos [2(A+B)]}{2}[/tex]

= [tex]\frac{1}{2} + \frac{1}{2} cos[2(A-B)] - \frac{1}{2} + \frac{1}{2} cos[2(A+B)][/tex]

= [tex]\frac{1}{2} cos[2(A-B)] + \frac{1}{2} cos[2(A+B)][/tex]

= [tex]\frac{1}{2} cos(2A-2B) + \frac{1}{2} cos(2A+2B)[/tex]      (expand using sum/difference identities)

= [tex]\frac{1}{2} (cos2Acos2B + sin2Asin2B ) + \frac{1}{2} (cos2Acos2B - sin2Asin2B )[/tex]

= [tex]\frac{1}{2} cos2Acos2B + \frac{1}{2}sin2Asin2B + \frac{1}{2} cos2Acos2B - \frac{1}{2}sin2Asin2B[/tex]

= [tex]\frac{1}{2} cos2Acos2B + \frac{1}{2} cos2Acos2B[/tex]

= [tex]cos2Acos2B[/tex]  (= RHS , Proven)