Given:
[tex]\angle A=5 x-18^{\circ}[/tex]
[tex]\angle B=3 x+42^{\circ}[/tex]
To find:
The value of x and measure of angle A
Solution:
Alternate interior angle theorem:
If two parallel lines cut by a transversal, then the alternate interior angles are congruent.
⇒ m∠A = m∠B
[tex]5x-18^\circ=3x+42^\circ[/tex]
Add 18° on both sides.
[tex]5x-18^\circ+18^\circ=3x+42^\circ+18^\circ[/tex]
[tex]5x=3x+60^\circ[/tex]
Subtract 3x from both sides.
[tex]5x-3x=3x+60^\circ-3x[/tex]
[tex]2x=60^\circ[/tex]
Divide by 2 on both sides.
⇒ x = 30°
Substitute x = 30° in ∠A.
m∠A = 5x - 18°
= 5(30°) - 18°
= 150° - 18°
= 132°
The measure of ∠A is 132°.