Respuesta :
Answer:
[tex]27.164 lb/in^2[/tex]
Explanation:
We are given that
Gauge pressure at 3.4 degree Celsius,P=[tex]24lb/in^2[/tex]
We have to find the gauge pressure in tire when the temperature rises to 26 degree Celsius.
Atmospheric pressure=[tex]14.7lb/in^2[/tex]
[tex]P_1=P+14.7=24+14.7=38.7lb/in^2[/tex]
K=273+Degree Celsius
[tex]T_1=3.4+273=276.4 K[/tex]
[tex]T_2=26+273=299K[/tex]
[tex]P_2=\frac{P_1T_2}{T_1}[/tex]
[tex]P_2=\frac{38.7\times 299}{276.4}[/tex]
[tex]P_2=41.864 lb/in^2[/tex]
Gauge pressure in tire when the temperature rises to 26 degree Celsius.=[tex]41.864-14.7=27.164lb/in^2[/tex]
Answer:
27.16 lb/in²
Explanation:
initial temperature, T1 = 3.4 °C = 276.4 K
initial gauge pressure, P1 = 24 lb/in²
atmospheric pressure, Po = 14.7 lb/in²
initial absolute pressure, P1' = Po + P1 = 14.7 + 24 = 38.7 lb/in²
final temperature, T2 = 26 °C = 299 K
Let the final gauge pressure is P2.
use the ideal gas equation and the volume is constant.
[tex]\frac{P_{1}'}{T_{1}}=\frac{P_{2}'}{T_{2}}[/tex]
[tex]\frac{38.7}{276.4}=\frac{P_{2}'}{299}[/tex]
P2' = 41.86 lb/in²
Now the gauge pressure, P2 = P2' - Po = 41.86 - 14.7 = 27.16 lb/in²
Thus, the new gauge pressure is 27.16 lb/in².