Respuesta :
Answer:
v = 1176.23 m/s
y = 741192.997 m = 741.19 km
Explanation:
Given
M₀ = 9 Kg (Initial mass)
me = 0.225 Kg/s (Rate of fuel consumption)
ve = 1980 m/s (Exhaust velocity relative to rocket, leaving at atmospheric pressure)
v = ? if t = 20 s
y = ?
We use the equation
v = ∫((ve*me)/(M₀ - me*t)) dt - ∫g dt where t ∈ (0, t)
⇒ v = - ve*Ln ((M₀ - me*t)/M₀) - g*t
then we have
v = - 1980 m/s*Ln ((9 Kg - 0.225 Kg/s*20 s)/(9 Kg)) - (9.81 m/s²)(20 s)
v = 1176.23 m/s
then we apply the formula
y = ∫v dt = ∫(- ve*Ln ((M₀ - me*t)/M₀) - g*t) dt
⇒ y = - ve* ∫ Ln ((M₀ - me*t)/M₀) dt - g*∫t dt
⇒ y = - ve*(Ln((M₀ - me*t)/M₀)*t + (M₀/me)*(M₀ - me*t - M₀*Ln(M₀ - me*t))) - (g*t²/2)
For t = 20 s we have
y = Ln((9 Kg - 0.225 Kg/s*20 s)/9 Kg)*(20 s) + (9 Kg/0.225 Kg/s)*(9 Kg - 0.225 Kg/s*20 s - 9 Kg*Ln(9 Kg - 0.225 Kg/s*20 s)) - (9.81 m/s²*(20 s)²/2)
⇒ y = 741192.997 m = 741.19 km
The graphs are shown in the pics.
Following are the solution to the given points:
Given:
[tex]\to v_o =1980\ \frac{m}{s}\\\\[/tex]
[tex]\to a=g= -9.8 \frac{m}{s} \ \text{(Diection downwords )}[/tex]
Solution:
Using formula:
[tex]\to V= V_o +at\\\\[/tex]
[tex]\to v^2-v^2_0= 2ad \\\\[/tex]
For point a:
[tex]\to V= V_o +at\\\\[/tex]
[tex]=1980+ (-9.8) (20) \\\\[/tex]
[tex]= 1980-196 \\\\ =1784\ \frac{m}{s}\\\\[/tex]
The velocity at the conclusion of a [tex]20[/tex] second is [tex]\bold{1784\ \frac{m}{s}}\\\\[/tex].
For point b:
Using formula:
[tex]\to v^2-v^2_0= 2ad \\\\[/tex]
[tex]\to d=\frac{v^2_0 -V^2}{2a}\\\\[/tex]
[tex]= \frac{(1980)^2 - (1784)^2}{2\times 9.8} \\\\ =\frac{3920400-3182656}{19.6}\\\\= \frac{737744}{17.6}\\\\ =37640\ m \\\\ = 37.64\ km\\\\[/tex]
In [tex]20[/tex] seconds, the total distance traveled is [tex]401737 \ \ m (or \ 401.737\ \ km)[/tex].
For point c:
Please find the attached file.