contestada

A cyclist coasts up a 9.00° slope, traveling 12.0 m along the road to the top of the hill. If the cyclist’s initial speed is 9.00 m/s, what is the final speed? Ignore friction and air resistance.

Respuesta :

Answer:

[tex]v_{f} \approx 6.647\,\frac{m}{s}[/tex]

Explanation:

The final speed of the cyclist is determined by applying the Principle of Energy Conservation:

[tex]\frac{1}{2}\cdot m\cdot v_{o}^{2} + m\cdot g\cdot h_{o} = \frac{1}{2}\cdot m\cdot v_{f}^{2} + m\cdot g\cdot h_{f}[/tex]

[tex]\frac{1}{2} \cdot v_{o}^{2} + g\cdot (h_{o}-h_{f}) = \frac{1}{2}\cdot v_{f}^{2}[/tex]

[tex]v_{f}^{2}=v_{o}^{2} + 2\cdot g \cdot (h_{o}-h_{f})[/tex]

[tex]v_{f} = \sqrt{v_{o}^{2}+2\cdot g \cdot (h_{o}-h_{f})}[/tex]

[tex]v_{f} = \sqrt{v_{o}^{2}-2\cdot g \cdot \Delta s \cdot \sin \theta}[/tex]

[tex]v_{f} = \sqrt{(9\,\frac{m}{s} )^{2}-2\cdot (9.807\,\frac{m}{s} )\cdot (12\,m)\cdot \sin 9^{\textdegree}}[/tex]

[tex]v_{f} \approx 6.647\,\frac{m}{s}[/tex]

Answer:

the final speed of the 10.85 m/s.

Explanation:

Given that,

Slope with respect to horizontal, [tex]\theta=9^{\circ}[/tex]

Distance travelled, d = 12 m

Initial speed of the cyclist, u = 9 m/s

We need to find the final speed of the cyclist. Let h is the height of the sloping surface such that,

[tex]h=d\times sin\thetah\\\\=12\times sin(9) \\\\h = 1.877 m[/tex]

v is the final speed of the cyclist. It can be calculated using work energy theorem as

[tex]\dfrac{1}{2}m(v^2-u^2)\\\\=mgh\dfrac{1}{2}(v^2-u^2)\\\\=gh\dfrac{1}{2}\times (v^2-(9.0)^2)\\\\=9.8\times 1.87\\\\v = 10.85 m/s[/tex]

Thus,the final speed of the 10.85 m/s.