Given:
a) 3 × 3 × 3 × 3 × 3
b) 4 × 4 × 4 × 5 × 5
c) 9 × 7 × 9 × 9 × 7 × 9
To find:
The index notation.
Solution:
a) Using multiplication rule of indices:
[tex]a^{n} \times a^{m}=a^{n+m}[/tex]
[tex]3\times3\times3\times3\times3=3^{1+1+1+1+1}[/tex]
[tex]=3^5[/tex]
Therefore, [tex]3\times3\times3\times3\times3=3^{5}[/tex]
b) Using multiplication rule of indices:
[tex]4\times4\times4\times5\times5=4^{1+1+1}5^{1+1}[/tex]
[tex]=4^35^2[/tex]
Therefore, [tex]4\times4\times4\times5\times5=4^{3}5^{2}[/tex]
c) Using multiplication rule of indices:
[tex]9\times7\times9\times 9\times7\times9=9^{1+1+1+1}7^{1+1}[/tex]
[tex]=9^47^2[/tex]
Therefore, [tex]9\times7\times9\times 9\times7\times9=9^{4}7^{2}[/tex]