Respuesta :
This is an incomplete question, here is a complete question.
The reaction below has a Kp value of 3.3 × 10⁻⁵. What is the value of Kc for this reaction at 700 K?
[tex]2SO_3(g)\rightleftharpoons 2SO_2(g)+O_2(g)[/tex]
Answer : The value of [tex]K_p[/tex] is, [tex]5.79E^{-7}[/tex]
Explanation :
The relation between [tex]K_c[/tex] and [tex]K_p[/tex] is:
[tex]K_p=K_c\times (RT)^{\Delta n}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant at constant pressure = [tex]3.3\times 10^{-5}[/tex]
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 700 K
[tex]\Delta n[/tex] = change in number of gaseous moles = Product moles - Reactant moles = (2+1) - (2) = 3 - 1 = 1 mol
[tex]K_c[/tex] = equilibrium constant
Now put all the given values in the above expression, we get:
[tex]K_p=K_c\times (RT)^{\Delta n}[/tex]
[tex]3.3\times 10^{-5}=K_c(0.0821\times 700)^{1}[/tex]
[tex]K_c=5.7\times 10^{-7}=5.7E^{-7}[/tex]
Therefore, the value of [tex]K_p[/tex] is, [tex]5.7E^{-7}[/tex]
The value of the equilibrium constant of the reaction (Kc) is [tex]5.74 \times 10^{-7}[/tex]
The given parameters;
- equilibrium constant at constant pressure, [tex]K_p[/tex] = 3.3 x 10⁻⁵.
- gas constant, R = 0.0821 L.atm/mol.K
- temperature, T = 700 K
The change in the number of gaseous moles is calculated as follows;
[tex]\Delta n = product \ - reactant\\\\\Delta n = (2+1) - 2 = 1 \ mole[/tex]
The value of the equilibrium constant (Kc) is calculated as follows;
[tex]K_p = K_c \times (RT)^{\Delta n}\\\\3.3 \times 10^{-5} = K_c \times (0.0821 \times 700)^1\\\\3.3 \times 10^{-5} = 57.47K_c\\\\K_c = \frac{3.3 \times 10^{-5} }{57.47} \\\\K_c = 5.74 \times 10^{-7} \[/tex]
Thus, the value of the equilibrium constant of the reaction (Kc) is [tex]5.74 \times 10^{-7}[/tex]
"Your question is not complete, it seems to be missing the following information;"
The reaction below has a Kp value of 3.3 × 10⁻⁵. What is the value of Kc for this reaction at 700 K?
[tex]2SO_3(g) \ ---> \ 2SO_2(g) \ + \ O_2[/tex]
Learn more here:https://brainly.com/question/17041334