Respuesta :
Answer:
a) = 0.106 V/m
b) = 354.52 pT
c) = 6.5 W
Explanation:
Given,
Intensity, I = 15 μW/m²
Distance, d = 8.3 km
E = √(2Iμc)
where
c = speed of light = 2.99*10^8
μ = permeability of free space = 4π*10^-7
E = √(2 * 15*10^-6 * 4*3.142*10^-7 * 2.99*10^8)
E = √(30*10^-6 * 1.257*10^-6 * 2.99*10^8)
E = √1.13*10^-2
E = 0.106 V/m
B = E/c
B = 0.106 / 2.99*10^8
B = 354.52 pT
P = IA
Where A = 1/2 * 4πr²
A = 0.5 * 4 * 3.142 * (8.3*10^3)²
A = 4.33*10^8
P = I A
P = 15*10^-6 * 4.33*10^-8
P = 6495 W
P = 6.5 kW
Therefore
a) = 0.106 V/m
b) = 354.52 pT
c) = 6.5 W
Answer:
a) Amplitude of the electric field, E = 0.1063 V/m
b) Magnetic field, B = = 3.545 x 10⁻¹⁰ Tesla
c) Transmission power, P = 6492.73 W
Explanation:
Intensity, I = 15 μW/m²
Distance, R = 8.3 km = 8300 m
a) The electric field amplitude
Relationship between the amplitude and intensity of a signal is given by:
[tex]I = \frac{E^{2} }{2c \mu}[/tex]..........(1)
c = 3 * 10⁸ m/s
μ = 4 π * 10⁻⁷
Substitute these values into equation (1)
[tex]15 * 10^{-6} = \frac{E^{2} }{2* 3 * 10^{8} * 4\pi * 10^{-7} }\\15 * 10^{-6} * 240\pi = E^{2}\\ E^{2} = 0.0113097\\E = 0.1063 V/m[/tex]
b)Amplitude of the magnetic field component at the airplane
B = E / c
B = = 0.1063 / (3 x 10⁸ )
B = = 3.545 x 10⁻¹⁰ Tesla
3) The transmission power:
Intensity, [tex]I = \frac{Power}{Area}[/tex]
P = I A
Area of the hemisphere, A = 2πR²
A = 2π * 8300²
A = 432848635.8116 m²
Power, P = 15 * 10⁻⁶ * 432848635.8116
P = 6492.73 W