The common ratio of a geometric series is \dfrac14
4
1

start fraction, 1, divided by, 4, end fraction and the sum of the first 4 terms is 170

Respuesta :

Answer:

The first term is 128

Step-by-step explanation:

The common ratio of the geometric series is given as:

[tex]r = \frac{1}{4} [/tex]

The sum of the first 4 term is 170.

The sum of first n terms of a geometric sequence is given b;

[tex]s_n=\frac{a_1(1-r^n)}{1-r}[/tex]

We put the common ratio, n=4 and equate to 170.

[tex]\frac{a_1(1-( \frac{1}{4} )^4)}{1- \frac{1}{4} } = 170[/tex]

Simplify:

[tex]\frac{a_1(1- \frac{1}{256} )}{ \frac{3}{4} } = 170[/tex]

[tex] \frac{255}{256} a_1 = \frac{3}{4} \times 170[/tex]

[tex]\frac{255}{256} a_1 = \frac{255}{2} [/tex]

[tex]\frac{1}{256} a_1 = \frac{1}{2} [/tex]

[tex] a_1 = \frac{1}{2} \times 256[/tex]

[tex]a_1 = \frac{1}{2} \times 256 = 128[/tex]

Answer:

128

Step-by-step explanation: