Respuesta :
Answer:
47.76°
Explanation:
Magnitude of dipole moment = 0.0243J/T
Magnetic Field = 57.5mT
kinetic energy = 0.458mJ
∇U = -∇K
Uf - Ui = -0.458mJ
Ui - Uf = 0.458mJ
(-μBcosθi) - (-μBcosθf) = 0.458mJ
rearranging the equation,
(μBcosθf) - (μBcosθi) = 0.458mJ
μB * (cosθf - cosθi) = 0.458mJ
θf is at 0° because the dipole moment is aligned with the magnetic field.
μB * (cos 0 - cos θi) = 0.458mJ
but cos 0 = 1
(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³
1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³
1 - cos θi = 0.3278
collect like terms
cosθi = 0.6722
θ = cos⁻ 0.6722
θ = 47.76°
Answer:
The initial angle between the dipole moment and the magnetic field is 47.76⁰
Explanation:
Given;
magnitude of dipole moment, μ = 0.0243 J/T
magnitude of magnetic field, B = 57.5 mT
change in kinetic energy, ΔKE = 0.458 mJ
ΔKE = - ΔU
ΔKE = - (U₂ -U₁)
ΔKE = U₁ - U₂
U₁ -U₂ = 0.458 mJ
[tex](-\mu Bcos \theta_i )- (-\mu Bcos \theta_f) = 0.458 mJ\\\\-\mu Bcos \theta_i + \mu Bcos \theta_f = 0.458 mJ\\\\\mu Bcos \theta_f -\mu Bcos \theta_i = 0.458 mJ\\\\\mu B(cos \theta_f - cos \theta_i ) = 0.458 mJ[/tex]
where;
θ₁ is the initial angle between the dipole moment and the magnetic field
[tex]\theta_f[/tex] is the final angle which is zero (0) since the dipole moment is aligned with the magnetic field
μB(cos0 - cosθ₁) = 0.458 mJ
Substitute the given values of μ and B
0.0243 x 0.0575 (1 - cosθ₁) = 0.000458
0.00139725 (1 - cosθ₁) = 0.000458
(1 - cosθ₁) = 0.000458 / 0.00139725
(1 - cosθ₁) = 0.327787
cosθ₁ = 1 - 0.327787
cosθ₁ = 0.672213
θ₁ = cos⁻¹ (0.672213)
θ₁ = 47.76⁰
Thus, the initial angle between the dipole moment and the magnetic field is 47.76⁰