Answer:
Required probability is 0.2262
Step-by-step explanation:
given data
mean length = 170 millimeters
standard deviation = 10 millimeters
sample n = 299
population mean by greater than = 0.7 millimeters
solution
we consider here batch of steel rod produced = x
probability that mean length sample that differ than the population mean greater than 0.7 required probability is
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 - P ( [tex]\bar {x} -\mu[/tex] ≤ 0.7 ) .................1
so we take here value
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 - [ P ( -0.7 ≤ [tex]\bar {x} -\mu[/tex] ≤ 0.7 ) ]
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 - [ P ( [tex]\frac{-0.7}{\frac{10}{\sqrt{299}}}[/tex] ≤ [tex]\frac{\bar {x} -\mu}{\frac{\sigma }{\sqrt{n}}}[/tex] ≤ [tex]\frac{0.7}{\frac{10}{\sqrt{299}}}[/tex] )
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 [ P ( - 1.21 ≤ Z ≤ 1.21 ) ]
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 ( P ( Z ≤ 1.21 ) - P ( Z ≤ - 1.21 ) )
we use here excel function that
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 - { (=NORMSDiST (1.21) - (=NORMSDiST (-1.21) }
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 1 - ( 0.8869 - 0.1131 )
P ( [tex]\bar {x} -\mu[/tex] > 0.7 ) = 0.2262
so required probability is 0.2262