Respuesta :
Answer:
(A) Velocity of car in order just to clear the river and land safely on the opposite side is [tex]29.68 \frac{m}{s}[/tex]
(B) The speed of the car is [tex]35.14 \frac{m}{s}[/tex]
Explanation:
Given:
Car distance from river [tex]y = 20.5[/tex] m
Mere distance from river [tex]y_{o} = 2.4[/tex] m
River length [tex]x= 57[/tex] m
(A)
For finding the velocity of car,
Using kinematics equation we find velocity of car
[tex]y - y_{o} = v_{o}t + \frac{1}{2} gt^{2}[/tex]
Where [tex]v_{o} = 0[/tex], [tex]g = 9.8[/tex] [tex]\frac{m}{s^{2} }[/tex] ( given in question )
[tex]20.5 - 2.4 = \frac{1}{2} \times 9.8 \times t^{2}[/tex]
[tex]t= 1.92[/tex] sec
The speed of the car before it lands safely on the opposite side of the river is given by,
[tex]v_{x} = \frac{x-x_{o} }{t}[/tex]
[tex]v_{x} = \frac{57-0}{1.92}[/tex] ( [tex]x_{o} = 0[/tex] )
[tex]v_{x} = 29.68[/tex] [tex]\frac{m}{s}[/tex]
(B)
For finding the speed,
The horizontal distance travel by car,
[tex]v_{y} = v_{o} + at[/tex]
Where [tex]a = 9.8[/tex] [tex]\frac{m}{s^{2} }[/tex]
[tex]v_{y} = 9.8 \times 1.92[/tex]
[tex]v_{y} = 18.81[/tex] [tex]\frac{m}{s}[/tex]
For finding the speed,
[tex]v = \sqrt{v_{x}^{2} + v_{y} ^{2} }[/tex]
[tex]v = \sqrt{(29.68)^{2}+ (18.81)^{2} }[/tex]
[tex]v = 35.14[/tex] [tex]\frac{m}{s}[/tex]
Therefore, the speed of the car is [tex]35.14 \frac{m}{s}[/tex]