A long straight wire carrying a 2.5 A current passes through the centre of a rectangle of dimensions 2.5 m by 7.5 m at the angle of 45 degrees to the surface normal. What is the path integral of ∮B⇀ ∙ ds⇀ around the outside of the rectangle? Express your answer using two significant figures. The answer should be in μT∙m.

Respuesta :

Answer:

The value of path integral is 2.2 [tex]\mu T.m[/tex]

Explanation:

Given:

Current carrying by long wire [tex]I = 2.5[/tex] A

Area of rectangle [tex]A = 18.75[/tex] [tex]m^{2}[/tex]

Angle with surface normal [tex]\theta =[/tex] 45°

According to the ampere's circuital law,

     [tex]\int\limits {B} \, ds = \mu _{o} I_{net}[/tex]

Where [tex]\mu _{o} = 4\pi \times 10^{-7}[/tex] [tex]ds=[/tex] area element

Here, [tex]I _{net} = I \cos 45[/tex]

 [tex]I_{net} = 2.5 \times \frac{1}{\sqrt{2} }[/tex]

Put value of current in above equation,

  [tex]\int\limits {B} \, ds = 4\pi \times 10^{-7} \times 2.5 \times \frac{1}{\sqrt{2} }[/tex]

  [tex]\int\limits {B} \, ds = 22.2 \times 10^{-7}[/tex]

  [tex]\int\limits {B} \, ds = 2.2 \times 10^{-6}[/tex]

  [tex]\int\limits {B} \, ds = 2.2[/tex] [tex]\mu T.m[/tex]

Therefore, the value of path integral is 2.2 [tex]\mu T.m[/tex]