A right triangle whose hypotenuse is StartRoot 18 EndRoot18 m long is revolved about one of its legs to generate a right circular cone. Find the​ radius, height, and volume of the cone of greatest volume that can be made this way.

Respuesta :

Answer:

V = [tex]\frac{1}{3}[/tex]π(8 - [tex]\frac{8}{3}[/tex])[tex]\sqrt{\frac{8}{3} }[/tex] = 9.11 [tex]m^{3}[/tex]

r = 4[tex]\frac{\sqrt{3} }{3}[/tex]

h = [tex]\sqrt{\frac{8}{3} }[/tex]

Step-by-step explanation:

Given that the right triangle whose hypotenuse is [tex]\sqrt{8}[/tex]

  • Let r is the radius of the cone
  • Let h is the height of the cone

We know that:

[tex]r^{2} + h^{2} = 8[/tex]

<=> [tex]r^{2} = 8 - h^{2}[/tex]

The volume of the cone is:

V = π[tex]r^{2} \frac{1}{3} h[/tex]

<=> V = π[tex]\frac{1}{3}(8 - h^{2} )h[/tex]

Differentiate w.r.t h

[tex]\frac{dV}{dh}[/tex] = π [tex]\frac{1}{3}[/tex] (8 - [tex]3h^{2}[/tex])

For maximum/minimum: [tex]\frac{dV}{dh}[/tex] = 0

<=> π [tex]\frac{1}{3}[/tex] (8 - [tex]3h^{2}[/tex])  = 0

<=> [tex]h^{2}[/tex] = [tex]\frac{8}{3}[/tex]

<=> h = [tex]\sqrt{\frac{8}{3} }[/tex]

=> [tex]r^{2}[/tex] = [tex]\frac{16}{3}[/tex]

<=> r = 4[tex]\frac{\sqrt{3} }{3}[/tex]

So the volume of the cone is:

V = [tex]\frac{1}{3}[/tex]π(8 - [tex]\frac{8}{3}[/tex])[tex]\sqrt{\frac{8}{3} }[/tex] = 9.11 [tex]m^{3}[/tex]