contestada

Problem 24.3 The assembly is made from a steel hemisphere, rho st = 7. 80 Mg/m3 , and an aluminum cylinder, rho al = 2. 70 Mg/m3 . If the height of the cylinder is h = 180 mm, determine the location z of the mass center of the assembly.

Respuesta :

Answer:

0.12 m    

Explanation:

The mass of the steel hemisphere is:

[tex]m_h=\rho_s\times \frac{2}{3}\pi r^2\\m_h = 7.8\times 10^3 \times \frac{2}{3}\pi (0.16)^2\\m_h=66.9 kg[/tex]

Mass of the aluminium cylinder is:

[tex]m_c=\rho_a\times \pi r^2 h\\m_c=2.7\times 10^3 \times \pi (0.08)^2(0.18) \\m_c =9.7 kg[/tex]

mass center of steel hemisphere from the bottom:

[tex]z_1=r-3r/8\\z_1=0.16-(3\times 0.16/8) =0.1 m[/tex]

mass center of aluminium cylinder from the bottom:

[tex]z_2=r+h/2 \\z_2=0.16+0.18/2=0.25 m[/tex]

center of mass is

[tex]Z=\frac{m_hz_1+z_2m_c}{m_s+m_c}\\Z=\frac{66.9\times 0.1+9.76\times 0.25}{66.9+9.76} = 0.12 m[/tex]

The center of mass will be "0.12 m".

Given:

  • [tex]\rho_s = 7.8 \ Mg/m^3[/tex]
  • [tex]\rho_a = 2.70 \ Mg/m^3[/tex]
  • Height of cylinder, [tex]h = 180 \ mm[/tex]

Now,

The mass of the steel hemisphere will be:

→ [tex]m_h = \rho_s\times \frac{2}{3} \pi r^2[/tex]

By putting the values, we get

         [tex]= 7.8\times 10^3\times \frac{2}{3} \pi (0.16)^2[/tex]

         [tex]= 66.9 \ kg[/tex]

and,

The mass of aluminum cylinder will be:

→ [tex]m_c = \rho_a \times \pi r^2 h[/tex]

        [tex]= 2.7\times 10^3\times \pi (0.08)^2 (0.18)[/tex]

        [tex]= 9.7 \ kg[/tex]

Now,

The mass center of steel hemisphere will be:

→ [tex]z_1 = r - \frac{3r}{8}[/tex]

       [tex]= 0.16-(3\times \frac{0.16}{8} )[/tex]

       [tex]= 0.1 \ m[/tex]

The mass center of aluminum hemisphere will be:

→ [tex]z_2 = r+\frac{h}{2}[/tex]

       [tex]= 0.16+\frac{0.18}{2}[/tex]

       [tex]= 0.25 \ m[/tex]

hence,

The center of mass will be:

→ [tex]Z = \frac{m_h z_1 +z_2 m_c}{m_s+m_c}[/tex]

By putting the values, we get

      [tex]= \frac{66.9\times 0.1+9.76\times 0.25}{66.9+9.76}[/tex]

      [tex]= 0.12 \ m[/tex]

Thus the above answer is right.

Learn more about mass center here:

https://brainly.com/question/14931324