Respuesta :
Answer:
0.12 m
Explanation:
The mass of the steel hemisphere is:
[tex]m_h=\rho_s\times \frac{2}{3}\pi r^2\\m_h = 7.8\times 10^3 \times \frac{2}{3}\pi (0.16)^2\\m_h=66.9 kg[/tex]
Mass of the aluminium cylinder is:
[tex]m_c=\rho_a\times \pi r^2 h\\m_c=2.7\times 10^3 \times \pi (0.08)^2(0.18) \\m_c =9.7 kg[/tex]
mass center of steel hemisphere from the bottom:
[tex]z_1=r-3r/8\\z_1=0.16-(3\times 0.16/8) =0.1 m[/tex]
mass center of aluminium cylinder from the bottom:
[tex]z_2=r+h/2 \\z_2=0.16+0.18/2=0.25 m[/tex]
center of mass is
[tex]Z=\frac{m_hz_1+z_2m_c}{m_s+m_c}\\Z=\frac{66.9\times 0.1+9.76\times 0.25}{66.9+9.76} = 0.12 m[/tex]
The center of mass will be "0.12 m".
Given:
- [tex]\rho_s = 7.8 \ Mg/m^3[/tex]
- [tex]\rho_a = 2.70 \ Mg/m^3[/tex]
- Height of cylinder, [tex]h = 180 \ mm[/tex]
Now,
The mass of the steel hemisphere will be:
→ [tex]m_h = \rho_s\times \frac{2}{3} \pi r^2[/tex]
By putting the values, we get
[tex]= 7.8\times 10^3\times \frac{2}{3} \pi (0.16)^2[/tex]
[tex]= 66.9 \ kg[/tex]
and,
The mass of aluminum cylinder will be:
→ [tex]m_c = \rho_a \times \pi r^2 h[/tex]
[tex]= 2.7\times 10^3\times \pi (0.08)^2 (0.18)[/tex]
[tex]= 9.7 \ kg[/tex]
Now,
The mass center of steel hemisphere will be:
→ [tex]z_1 = r - \frac{3r}{8}[/tex]
[tex]= 0.16-(3\times \frac{0.16}{8} )[/tex]
[tex]= 0.1 \ m[/tex]
The mass center of aluminum hemisphere will be:
→ [tex]z_2 = r+\frac{h}{2}[/tex]
[tex]= 0.16+\frac{0.18}{2}[/tex]
[tex]= 0.25 \ m[/tex]
hence,
The center of mass will be:
→ [tex]Z = \frac{m_h z_1 +z_2 m_c}{m_s+m_c}[/tex]
By putting the values, we get
[tex]= \frac{66.9\times 0.1+9.76\times 0.25}{66.9+9.76}[/tex]
[tex]= 0.12 \ m[/tex]
Thus the above answer is right.
Learn more about mass center here:
https://brainly.com/question/14931324