Respuesta :
Answer: The final temperature of the mixture is 49°C
Explanation:
To calculate the mass of water, we use the equation:
[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]
- For cold water:
Density of cold water = 1 g/mL
Volume of cold water = 230.0 mL
Putting values in above equation, we get:
[tex]1g/mL=\frac{\text{Mass of water}}{230.0mL}\\\\\text{Mass of water}=(1g/mL\times 230.0mL)=230g[/tex]
- For hot water:
Density of hot water = 1 g/mL
Volume of hot water = 120.0 mL
Putting values in above equation, we get:
[tex]1g/mL=\frac{\text{Mass of water}}{120.0mL}\\\\\text{Mass of water}=(1g/mL\times 120.0mL)=120g[/tex]
When hot water is mixed with cold water, the amount of heat released by hot water will be equal to the amount of heat absorbed by cold water.
[tex]Heat_{\text{absorbed}}=Heat_{\text{released}}[/tex]
The equation used to calculate heat released or absorbed follows:
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c\times (T_{final}-T_1)=-[m_2\times c\times (T_{final}-T_2)][/tex] ......(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of hot water = 120 g
[tex]m_2[/tex] = mass of cold water = 230 g
[tex]T_{final}[/tex] = final temperature = ?°C
[tex]T_1[/tex] = initial temperature of hot water = 95°C
[tex]T_2[/tex] = initial temperature of cold water = 25°C
c = specific heat of water = 4.186 J/g°C
Putting values in equation 1, we get:
[tex]120\times 4.186\times (T_{final}-95)=-[230\times 4.186\times (T_{final}-25)][/tex]
[tex]T_{final}=49^oC[/tex]
Hence, the final temperature of the mixture is 49°C