The oxidation of copper(I) oxide, Cu 2 O ( s ) , to copper(II) oxide, CuO ( s ) , is an exothermic process. 2 Cu 2 O ( s ) + O 2 ( g ) ⟶ 4 CuO ( s ) Δ H ∘ rxn = − 292.0 kJ mol Calculate the energy released as heat when 9.94 g Cu 2 O ( s ) undergo oxidation at constant pressure.

Respuesta :

Answer:

The energy released as heat when 9.94 g Cu 2 O ( s ) undergo oxidation at constant pressure is -10.142 kJ

Explanation:

Here we have

2Cu₂O ( s ) + O₂ ( g ) ⟶ 4 CuO ( s ) Δ H ∘ rxn = − 292.0 kJ mol

In the above reaction, 2 Moles of Cu₂O (copper (I) oxide) react with one mole of O₂ to produce 4 moles of CuO, with the release of − 292.0 kJ/mol of energy

Therefore,

1 Moles of Cu₂O (copper (I) oxide) react with 0.5 mole of O₂ to produce 2 moles of CuO, with the release of − 146.0 kJ  of energy

We have 9.94 g of Cu₂O with molar mass given as 143.09 g/mol

Hence the number of moles in 9.94 g of Cu₂O is given as

9.94/143.09 = 6.95 × 10⁻² moles of Cu₂O

6.95 × 10⁻² moles of Cu₂O will therefore produce 6.95 × 10⁻² ×  − 146.0 kJ mol  or -10.142 kJ.