Calculate the value of the equilibrium constant, K c , for the reaction AgCl ( s ) + Cl − ( aq ) − ⇀ ↽ − AgCl − 2 ( aq ) K c = ? The solubility product constant, K sp , for AgCl is 1.77 × 10 − 10 and the overall formation constant, K f ( β 2 ), for AgCl − 2 is 1.8 × 10 5 .

Respuesta :

Answer:

The equilibrium constant is  Kc [tex]=1.9116*10^{-5}[/tex]  

Explanation:

      The equation for the formation of [tex]AgCl_2^-[/tex] can also be defined as  

                  [tex]Ag^+(aq) + 2Cl^-(aq) -----> AgCl^-_2(aq)[/tex]

Now the formation constant is mathematically represented as

            [tex]Kf =\frac{concentration \ of \ formation \ionic\ product }{concentration \ of \ formation \ionic \ reactant }[/tex]     for the formation of [tex]AgCl_2^-[/tex]

Substituting parameters

                [tex]Kf = \frac{[AgCl_2^-]}{[Ag^+ ] * [2Cl^-]}[/tex]

Now the value of  [tex]Kf = 1.8*10^5[/tex]

    The solubility product is mathematically represented as

                    [tex]Ksp = The \ product \ of \ the concentration \ of \ the \ reactant[/tex]

For [tex]AgCl[/tex]

                   [tex]Ksp = [Ag^+] [Cl ^-][/tex]

The value is given as [tex]Ksp = 1.77*10^{-10}[/tex]

The equation given to us in this question is

              [tex]AgCl ( s ) + Cl ^- ( aq ) -----> AgCl ^-_ 2 ( aq )[/tex]

The equilibrium constant is mathematically represented as

                  [tex]Kc =\frac{concentration \ of \ ionic \ product }{concentration \ of \ ionic \ reactant }[/tex]

For the above equation

                  [tex]Kc = \frac{[AgCl^-_2]}{[Cl^-]}[/tex]

Now

        [tex]Ksp \cdot Kf = \frac{[AgCl_2^-]}{[Ag^+ ] * [2Cl^-]}[Ag^+] [Cl ^-][/tex]

                         [tex]=\frac{[AgCl^-_2]}{[Cl^-]}[/tex]

                         [tex]= Kc[/tex]

Substituting values

Therefore [tex]Kc = 1.77*10^{-10} * 1.08*10^{5}[/tex]

                     Kc [tex]=1.9116*10^{-5}[/tex]