Respuesta :
Answer:
The equilibrium constant is Kc [tex]=1.9116*10^{-5}[/tex]
Explanation:
The equation for the formation of [tex]AgCl_2^-[/tex] can also be defined as
[tex]Ag^+(aq) + 2Cl^-(aq) -----> AgCl^-_2(aq)[/tex]
Now the formation constant is mathematically represented as
[tex]Kf =\frac{concentration \ of \ formation \ionic\ product }{concentration \ of \ formation \ionic \ reactant }[/tex] for the formation of [tex]AgCl_2^-[/tex]
Substituting parameters
[tex]Kf = \frac{[AgCl_2^-]}{[Ag^+ ] * [2Cl^-]}[/tex]
Now the value of [tex]Kf = 1.8*10^5[/tex]
The solubility product is mathematically represented as
[tex]Ksp = The \ product \ of \ the concentration \ of \ the \ reactant[/tex]
For [tex]AgCl[/tex]
[tex]Ksp = [Ag^+] [Cl ^-][/tex]
The value is given as [tex]Ksp = 1.77*10^{-10}[/tex]
The equation given to us in this question is
[tex]AgCl ( s ) + Cl ^- ( aq ) -----> AgCl ^-_ 2 ( aq )[/tex]
The equilibrium constant is mathematically represented as
[tex]Kc =\frac{concentration \ of \ ionic \ product }{concentration \ of \ ionic \ reactant }[/tex]
For the above equation
[tex]Kc = \frac{[AgCl^-_2]}{[Cl^-]}[/tex]
Now
[tex]Ksp \cdot Kf = \frac{[AgCl_2^-]}{[Ag^+ ] * [2Cl^-]}[Ag^+] [Cl ^-][/tex]
[tex]=\frac{[AgCl^-_2]}{[Cl^-]}[/tex]
[tex]= Kc[/tex]
Substituting values
Therefore [tex]Kc = 1.77*10^{-10} * 1.08*10^{5}[/tex]
Kc [tex]=1.9116*10^{-5}[/tex]