Respuesta :

Answer:

[tex]v = 183 {cm}^{3} to \: the \: nearest \: whole \: number[/tex]

Step-by-step explanation:

Volume of a cone is given as:

[tex]v = \frac{1}{3} \times\pi \times \ {r}^{2} \times h[/tex]

where,

pi = 3.14

r = radius = half of diameter; 10cm/2 = 5cm

h = height = 3cm + 4cm = 7cm

Thus,

[tex]v = \frac{1}{3} \times 3.14cm \times {5}^{2} cm \times 7cm[/tex]

[tex]v = \frac{1}{3} \times 3.14cm \times 25cm \times 7cm[/tex]

[tex]v = \frac{1}{3} \times 549.50 {cm}^{3} [/tex]

[tex]v = \frac{549.50 {cm}^{3} }{3} [/tex]

[tex]v = 183.17 {cm}^{3} [/tex]

[tex]v = 183 {cm}^{3} to \: nearest \: whole \: number[/tex]