Answer:
[tex]v = 183 {cm}^{3} to \: the \: nearest \: whole \: number[/tex]
Step-by-step explanation:
Volume of a cone is given as:
[tex]v = \frac{1}{3} \times\pi \times \ {r}^{2} \times h[/tex]
where,
pi = 3.14
r = radius = half of diameter; 10cm/2 = 5cm
h = height = 3cm + 4cm = 7cm
Thus,
[tex]v = \frac{1}{3} \times 3.14cm \times {5}^{2} cm \times 7cm[/tex]
[tex]v = \frac{1}{3} \times 3.14cm \times 25cm \times 7cm[/tex]
[tex]v = \frac{1}{3} \times 549.50 {cm}^{3} [/tex]
[tex]v = \frac{549.50 {cm}^{3} }{3} [/tex]
[tex]v = 183.17 {cm}^{3} [/tex]
[tex]v = 183 {cm}^{3} to \: nearest \: whole \: number[/tex]