Answer:
The approximate probability that there are fewer than 100 accidents in a year = .9251
Step-by-step explanation:
Given -
Mean [tex](\nu )[/tex] =2.2
Standard deviation [tex]\sigma[/tex] = 1.4
Let [tex]\overline{X}[/tex] be the mean number of accidents per week at the intersection during a year (52 weeks)
Then [tex]\overline{X}[/tex] = [tex]\frac{100}{52}[/tex] = 1.92
the approximate probability that there are fewer than 1.92 accidents per week in a year
[Z = [tex]\frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}[/tex] ]
= [tex]P(\overline{X} < 1.92 )[/tex] = ([tex]P(\frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}< \frac{1.92 - 2.2 }{\frac{1.4}{\sqrt{52}}})[/tex]
= P( [tex]Z < -1.442[/tex] ) ( Using Z table)
= .9251