Answer:
Volume of the cube is [tex]64x^9[/tex].
Step-by-step explanation:
Given:
Volume of the cube [tex]V = L^3[/tex]
where [tex]L[/tex] ⇒ side length
side length [tex]L =4x^3[/tex]
We need to find the Volume of the cube.
Solution:
Now we know that;
Volume of the cube [tex]V = L^3[/tex]
But side length [tex]L =4x^3[/tex]
So we will substitute the value of L in above equation we get;
Volume of the cube [tex]V = L^3=(4x^3)^3[/tex]
Now by using Law of indices which states [tex](a^m)^n=a^{mn}[/tex]
So we can say that;
Volume of the cube [tex]V = L^3=(4x^3)^3=4^3x^{3\times3}=64x^9[/tex]
Hence Volume of the cube is [tex]64x^9[/tex].