Respuesta :
Answer:
The amplitude of the motion of the spring is 1 m.
Explanation:
From the conservation of energy;
[tex](PE_{spring})_{max}= PE+KE[/tex]
which is
[tex]\frac{1}{2} kx^2_{max}=\frac{1}{2} kx^2+\frac{1}{2} mv^2[/tex]
Make [tex]x_{max}[/tex] the subject of formula
[tex]x^2_{max}= \frac{kx^2\times mv^2}{k}[/tex]
[tex]x_{max}= \sqrt{\frac{kx^2\times mv^2}{k} }[/tex]
Substitute 320 N/m for k, 0.017 m for x, 3.7 kg for m, and 0.60 m/s for v.
[tex]x_{max}= \sqrt{\frac{(320)(0.017)^2+ (3.7)(0.60)^2}{320} } \\\\=1m[/tex]
Thus, The amplitude of the motion of the spring is 1 m.
Answer: 0.0667m
Explanation:
given
Mass of the object, m = 3.7kg
Force constant of the spring, k = 320 N/m
Speed of the object, v = 0.6 m/s
Distance from equilibrium position, x = 0.017 m
Using the law of conservation of energy. The total energy conserved is
= 1/2kx² + 1/2mv²
= 1/2 * 320 * 0.017² + 1/2 * 3.7 * 0.6²
= 0.046 + 0.666
= 0.712 J
When v = 0, the maximum deflection is Xmas. This Xmas, is also the amplitude. Such that,
Energy = 1/2kx²
0.712 = 1/2 * 320 * x²
1.424 = 320 x²
x² = 1.424 / 320
x² = 0.00445
x = 0.0667
x = 6.67*10^-2 m
Thus, the amplitude is 0.0667 m