A charged capacitor is connected to an ideal inductor to form an LC circuit with a frequency of oscillation f = 1.6 Hz. At time t = 0 the capacitor is fully charged. At a given instant later the charge on the capacitor is measured to be 3.0 μC and the current in the circuit is equal to 75 μA. What is the maximum charge of the capacitor?

Respuesta :

Answer:

[tex]8.0\mu C[/tex]

Explanation:

We are given that

[tex]f=1.6 Hz[/tex]

[tex]q=3.0\mu C=3.0\times 10^{-6} C[/tex]

[tex]1\mu C=10^{-6} C[/tex]

Current,I=[tex]75\mu A=75\times 10^{-6} A[/tex]

[tex]1\mu A=10^{-6} A[/tex]

We have to find the maximum charge of the capacitor.

Charge on the capacitor,[tex]q=q_0cos\omega t[/tex]

[tex]\omega=2\pi f=2\pi\times 1.6=3.2\pi rad/s[/tex]

[tex]3\times 10^{-6}=q_0cos3.2\pi t[/tex]....(1)

[tex]I=\frac{dq}{dt}=-q_0\omega sin\omega t[/tex]

[tex]75\times 10^{-6}=-q_0(3.2\pi)sin3.2\pi t[/tex]....(2)

Equation (2) divided by equation (1)

[tex]-3.2\pi tan3.2\pi t=\frac{75\times 10^{-6}}{3\times 10^{-6}}=25[/tex]

[tex]tan3.2\pi t=-\frac{25}{3.2\pi}=-2.488[/tex]

[tex]3.2\pi t=tan^{-1}(-2.488)=-1.188rad[/tex]

[tex]q_0=\frac{q}{cos\omega t}=\frac{3\times 10^{-6}}{cos(-1.188)}=8.0\times 10^{-6}=8\mu C[/tex]

Hence, the maximum charge of the capacitor=[tex]8.0\mu C[/tex]

ACCESS MORE