Answer:
19.29 m/s
Explanation:
Apply the conservation of linear momentum in north-south direction:
[tex]m_pv_p+m_ev_e sin \theta = (m_p+m_e)v_f sin \phi\\m_p (17.3)+(2m_p)(33.7 sin (-39.9))=3m_p v_f sin \phi\\17.3-43.23=3v_fsin\phi\\\Rightarrow v_f sin\phi = -8.64[/tex]
Apply the conservation of linear momentum in east-west direction:
[tex]m_ev_e cos \theta = (m_p+m_e)v_f cos \phi\\2m_p (33.7)cos (39.9) = 3 m_pv_f cos\phi\\\Rightarrow v_f cos\phi = 17.23[/tex]
Dividing the two equations:
[tex]tan \phi = \frac{-8.64}{17.23} \\\phi = -26.6^o[/tex]
[tex]v_f sin \phi = -8.64 \\v_f = \frac{-8.64}{sin (-26.6^o)} = 19.29 m/s[/tex]
Thus, the speed of the eagle immediately after it catches its prey is 19.29 m/s.