If (−4, 11) and (−6, 5) are the endpoints of a diameter of a circle, what is the equation of the circle?

A) (x + 5)^2 + (y − 8)^2 = 100
B) (x + 5)^2 + (y − 8)^2 = 10
C) (x − 5)^2 − (y + 8)^2 = 10
D) (x − 5)^2 + (y + 10)^2 = 8

Respuesta :

Answer:

A. [tex](x+5)^2+(y-8)^2=100[/tex]

Step-by-step explanation:

1. The standard form of the equation of a circle is [tex](x-h)^{2} + (y-k)^2=r^2[/tex]

2. To find the center we require the  midpoint   of the  2 given points

center =[tex][\frac{1}{2}(-4-6),\frac{1}{2}(11+5)][/tex]

=(-5,8)

3. The radius is the distance from the centre to either of  the 2 given points calculate the radius using the  distance formula

d= [tex]\sqrt{(x_{2}+x_{1})^{2} +(y_{2}-y_{1})^{2}[/tex]

let [tex](x_{1},y_{1})= (-5,8) \\[/tex] and [tex](x_2,y_2)=(-4,11)[/tex]

r=[tex]\sqrt{(-4+5)^2+(11-8)^2} =\sqrt{81+9}=10[/tex]

--> [tex](x-(-5)^2+(y-8)^2=10^2[/tex]

--> [tex](x+5)^2+(y-8)^2=100[/tex]

Answer:

The anser is B 100% willing to put $100 on it.

Step-by-step explanation: