Answer:
The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.13, 0.168).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
1291 tenth graders, 1098 read above the eighth grade level.
1291 - 1098 = 193 read at or below this level.
We want the 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level.
So [tex]n = 1291, \pi = \frac{193}{1291} = 0.149[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.149 - 1.96\sqrt{\frac{0.149*0.851}{1291}} = 0.13[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.149 - 1.96\sqrt{\frac{0.149*0.851}{1291}} = 0.168[/tex]
The 95% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level is (0.13, 0.168).