Answer:
[tex][SO_2Cl_2] = 0.09983 M[/tex]
Explanation:
Write the balance chemical equation ,
[tex]SO_2Cl_2((g) = SO_2(g) + Cl_2(g)[/tex]
initial concenration of [tex]SO_2Cl_2((g) =0.1M[/tex]
lets assume that degree of dissociation=[tex]\alpha[/tex]
concenration of each component at equilibrium:
[tex][SO_2Cl_2] = 0.1-0.1\alpha[/tex]
[tex][SO_2] = 0.1\alpha[/tex]
[tex][Cl_2] = 0.1\alpha[/tex]
[tex]Kc =\frac{0.1\alpha \times 0.1\alpha}{0.1-0.1\alpha}[/tex]
[tex]Kc =\frac{0.1\alpha \times \alpha}{1-\alpha}[/tex]
as [tex]\alpha[/tex] is very small then we can neglect [tex]1-\alpha[/tex]
therefore ,
[tex]Kc ={0.1\alpha \times \alpha}[/tex]
[tex]\alpha =\sqrt{\frac{Kc}{0.1}}[/tex]
[tex]\alpha = 1.73 \times 10^{-3}[/tex]
Eqilibrium concenration of [tex][SO_2Cl_2] = 0.1-0.1\alpha = 0.1-0.1\times 0.00173[/tex]
[tex][SO_2Cl_2] = 0.09983 M[/tex]