Which expression is equivalent to (StartFraction (2 a Superscript negative 3 Baseline b Superscript 4 Baseline) squared Over (3 a Superscript 5 Baseline b) Superscript negative 2 Baseline EndFraction) Superscript negative 1?

Which expression is equivalent to StartFraction 2 a Superscript negative 3 Baseline b Superscript 4 Baseline squared Over 3 a Superscript 5 Baseline b Superscri class=

Respuesta :

Answer: C is the correct answer!!!! I got it correct! Trust me!!!!!

The expression equivalent to the given expression is [tex]\left[\dfrac{1}{(36a^{4}b^{10})}\right][/tex] and this can be determined by using the arithmetic operations.

Given :

Expression  ---   [tex]\left[\dfrac{(2a^{-3}b^4)^{2}}{(3a^5b)^{-2}}\right]^{-1}[/tex]

The following steps can be used in order to evaluate the given expression:

Step 1 - The arithmetic operations can be used in order to evaluate the given expression.

Step 2 - Write the given expression.

[tex]\left[\dfrac{(2a^{-3}b^4)^{2}}{(3a^5b)^{-2}}\right]^{-1}[/tex]

Step 3 - Simplify the above expression.

[tex]\left[\dfrac{1}{(3a^5b)^{2}(2a^{-3}b^4)^{2}}\right][/tex]

Step 4 - Open the brackets and square the given terms in the denominator.

[tex]\left[\dfrac{1}{(9a^{10}b^2)\times (4a^{-6}b^8)}\right][/tex]

Step 5 - Multiply the terms present in the denominator.

[tex]\left[\dfrac{1}{(36a^{4}b^{10})}\right][/tex]

Therefore, the correct option is C).

For more information, refer to the link given below:

https://brainly.com/question/25834626