Respuesta :
Answer:
[tex]f=9.5\ KHz[/tex]
Explanation:
AC Circuit
When connected to an AC circuit, the capacitor acts as an impedance of module
[tex]\displaystyle Z=\frac{1}{wC}[/tex]
Where w is the angular frequency of the power source and C is the capacitance.
If the capacitor is the only element connected to a circuit, then the Ohm's law establishes that
[tex]V=Z.I[/tex]
Where V and I are the rms voltage and current respectively. Replacing the value of Z, we have
[tex]\displaystyle V=\frac{I}{wC}[/tex]
Solving for w
[tex]\displaystyle w=\frac{I}{VC}[/tex]
The question provides us the following values
[tex]C=63\ \mu F=63\cdot 10^{-6}\ F[/tex]
[tex]V=4\ Volt[/tex]
[tex]I=15\ A[/tex]
Plugging in the values
[tex]\displaystyle w=\frac{15}{4\cdot 63\cdot 10^{-6}}[/tex]
[tex]w=59523.81\ rad/s[/tex]
Since
[tex]w=2\pi f[/tex]
Then
[tex]\displaystyle f=\frac{59523.81}{2\pi}=9473.51\ Hz[/tex]
[tex]f=9.5\ KHz[/tex]