Answer:
a. Confidence Interval =[15.412,16.588]
b [tex]n\geq 139[/tex]
Step-by-step explanation:
a. Given a sample of size n=100 and mean =16, standard deviation =3, the 95% confidence interval is calculated using the formula;
[tex]\bar X\pm z\frac{\sigma}{\sqrt{n}}[/tex]
#We substitute for the Lower bound interval;
[tex]=\bar X- z\frac{\sigma}{\sqrt{n}}\\\\\\=16-1.96\times\frac{3}{\sqrt{100}}\\\\\\=15.412[/tex]
#For the upper bound;
[tex]=\bar X+ z\frac{\sigma}{\sqrt{n}}\\\\=16+1.96\times \frac{3}{\sqrt{100}}\\\\\\=16.588[/tex]
Hence, the 95% confidence interval for the population mean is between 15.412 and 16.588
b. To find how large the sample has to be, we calculate using the formula;
[tex]n\geq (z_{\alpha/2 }\sigma/\bigtriangleup)^2[/tex]
where;
#We substitute in the equation;
[tex]n\geq (\frac{1.96\times 3}{0.5})^2\\\\=138.298\approx 139[/tex]
Hence, the desired sample size is atleast 139