contestada

An insect population dies of exponentially and is governed by the equation p′=−µp, where µ is the mortality rate. If 1200 insects hatch, and only 70 remain after 6 days, what is the mortality rate?.

Respuesta :

Answer:

[tex]47.36\%[/tex]

Step-by-step explanation:

The equation that governs how the insect population dies is

[tex]p' = - \mu p[/tex]

We need to solve this differential equation for p.

We separate variables to get:

[tex] \frac{p'}{p} = - \mu[/tex]

We integrate both sides to get:

[tex] \int\frac{p'}{p} dt = - \mu \int \: dt[/tex]

[tex] ln( |p| ) = - \mu \: t + ln(k) [/tex]

[tex]p = c{e}^{ \ - ut} [/tex]

If 1200 insects hatch, and only 70 remain after 6 days,

Then we have:

[tex]70 = 1200 {e}^{ - 6 \mu} [/tex]

[tex] \frac{70}{1200} = {e}^{ - 6 \mu} [/tex]

[tex] - 6 \mu = ln( \frac{7}{120} ) [/tex]

[tex] \mu = \frac{ln( \frac{7}{120} ) }{ - 6} [/tex]

[tex] \mu = 0.4736[/tex]

[tex]47.36\%[/tex]