Answer:
[tex]47.36\%[/tex]
Step-by-step explanation:
The equation that governs how the insect population dies is
[tex]p' = - \mu p[/tex]
We need to solve this differential equation for p.
We separate variables to get:
[tex] \frac{p'}{p} = - \mu[/tex]
We integrate both sides to get:
[tex] \int\frac{p'}{p} dt = - \mu \int \: dt[/tex]
[tex] ln( |p| ) = - \mu \: t + ln(k) [/tex]
[tex]p = c{e}^{ \ - ut} [/tex]
If 1200 insects hatch, and only 70 remain after 6 days,
Then we have:
[tex]70 = 1200 {e}^{ - 6 \mu} [/tex]
[tex] \frac{70}{1200} = {e}^{ - 6 \mu} [/tex]
[tex] - 6 \mu = ln( \frac{7}{120} ) [/tex]
[tex] \mu = \frac{ln( \frac{7}{120} ) }{ - 6} [/tex]
[tex] \mu = 0.4736[/tex]
[tex]47.36\%[/tex]