Respuesta :
Answer:
[tex]y(t) = - 5 {e}^{2\pi - 2t} \cos(t)[/tex]
Step-by-step explanation:
The given initial value problem is
[tex]y''+4y'+5=0[/tex]
[tex]y( \frac{ \pi}{2} ) = 0[/tex]
[tex]y'( \frac{ \pi}{2} ) = 5[/tex]
The corresponding characteristic equation is
[tex] {m}^{2} + 4m + 5 = 0[/tex]
[tex]m = - 2 \pm \: i[/tex]
The general solution becomes:
[tex]y(t) = A {e}^{ - 2t} \cos(t) + B {e}^{ - 2t} \sin(t) [/tex]
We differentiate to get:
[tex]y'(t) = - A {e}^{ - 2t} \sin(t) - 2 A {e}^{ - 2t} \cos(t) + B {e}^{ - 2t} \cos(t) - 2B {e}^{ - 2t} \sin(t) [/tex]
We apply the initial conditions to get;
[tex]y( \frac{\pi}{2} ) = A {e}^{ - 2\pi} \cos( \frac{\pi}{2} ) + B {e}^{ - 2\pi} \sin( \frac{\pi}{2} ) [/tex]
[tex] A {e}^{ - 2\pi} (0 ) + B {e}^{ - 2\pi} ( 1) = 0[/tex]
[tex] B = 0[/tex]
Also;
[tex]y'( \frac{\pi}{2} ) = - A {e}^{ - 2\pi} \sin( \frac{\pi}{2} ) - 2 A {e}^{ - 2\pi} \cos( \frac{\pi}{2} ) + B {e}^{ - 2\pi} \cos( \frac{\pi}{2} ) - 2B {e}^{ - 2\pi} \sin( \frac{\pi}{2} ) [/tex]
[tex] - A {e}^{ - 2\pi} ( 1 ) - 2 A {e}^{ - 2\pi} ( 0 ) + B {e}^{ - 2\pi}( 0) - 2B {e}^{ - 2\pi} ( 1 ) = 5[/tex]
[tex]- A {e}^{ - 2\pi} - 2B {e}^{ - 2\pi} = 5[/tex]
But B=0
[tex]- A {e}^{ - 2\pi} = 5[/tex]
[tex]A = 5{e}^{2\pi}[/tex]
Therefore the particular solution is
[tex]y(t) = - 5 {e}^{2\pi} {e}^{ - 2t} \cos(t) + 0 \times {e}^{ - 2t} \sin(t)[/tex]
[tex]y(t) = - 5 {e}^{2\pi - 2t} \cos(t)[/tex]