Respuesta :

Given:

[tex]$\frac{\left(\frac{a^{2}-b^{2}}{a b}\right)}{\left(\frac{1}{b}-\frac{1}{a}\right)}[/tex]

To find:

The simplified expression.

Solution:

[tex]$\frac{\left(\frac{a^{2}-b^{2}}{a b}\right)}{\left(\frac{1}{b}-\frac{1}{a}\right)}[/tex]

Apply the fraction rule: [tex]\frac{\frac{y}{z}}{x}=\frac{y}{z \cdot x}[/tex]

[tex]$\frac{\left(\frac{a^{2}-b^{2}}{a b}\right)}{\left(\frac{1}{b}-\frac{1}{a}\right)}=\frac{a^{2}-b^{2}}{a b\left(\frac{1}{b}-\frac{1}{a}\right)}[/tex]  ------------ (1)

Let us simplify [tex]\frac{1}{b}-\frac{1}{a}[/tex].

LCM of a and b = ab

Adjacent fraction based on the LCM

[tex]\frac{1}{b}-\frac{1}{a}=\frac{a}{a b}-\frac{b}{a b}[/tex]

         [tex]=\frac{a-b}{a b}[/tex]

Substitute this in equation (1).

         [tex]$=\frac{a^{2}-b^{2}}{\frac{a-b}{a b} a b}[/tex]

Common factor ab get canceled.

         [tex]$=\frac{a^{2}-b^{2}}{a-b}[/tex]

Apply the algebraic formula: [tex]x^{2}-y^{2}=(x+y)(x-y)[/tex]

         [tex]$=\frac{(a+b)(a-b)}{a-b}[/tex]

Cancel the common factor a - b, we get

         [tex]=a+b[/tex]

The simplified expression is a + b.