Respuesta :
Answer:
[tex]\displaystyle \int {xe^{-5x}} \, dx = -e^{-5x} \bigg( \frac{x}{5} + \frac{1}{25} \bigg) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {xe^{-5x}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x[/tex]
- [u] Differentiate [Derivative Rule - Basic Power Rule]: [tex]\displaystyle du = dx[/tex]
- Set dv: [tex]\displaystyle dv = e^{-5x} \ dx[/tex]
- [dv] Integrate [Exponential Integration, U-Substitution]: [tex]\displaystyle v = \frac{-e^{-5x}}{5}[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by parts: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} - \int {\frac{-e^{-5x}}{5}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} + \frac{1}{5} \int {e^{-5x}} \, dx[/tex]
Step 4: Integrate Pt. 3
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = -5x[/tex]
- [u] Differentiate [Derivative Property, Basic Power Rule]: [tex]\displaystyle du = -5 \ dx[/tex]
Step 5: Integrate Pt. 4
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} - \frac{1}{25} \int {-5e^{-5x}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} - \frac{1}{25} \int {e^u} \, du[/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} - \frac{e^u}{25} + C[/tex]
- [u] Back-Substitute: [tex]\displaystyle \int {xe^{-5x}} \, dx = \frac{-xe^{-5x}}{5} - \frac{e^{-5x}}{25} + C[/tex]
- Factor: [tex]\displaystyle \int {xe^{-5x}} \, dx = -e^{-5x} \bigg( \frac{x}{5} + \frac{1}{25} \bigg) + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration