Triangle C F E is shown. Angle C F E is a right angle. An altitude is drawn from point F to point D on side C E, forming a right angle. The length of F D is 9, the length of C D is 5, and the length of D E is 2 x + 3.
What is the value of x and the length of segment DE?
StartFraction 5 Over 9 EndFraction = StartFraction 9 Over 2 x + 3 EndFraction
10x + 15 = 9(9)
x =
Length of = units

Respuesta :

What is the value of x and the length of segment DE?

StartFraction 5 Over 9 EndFraction = StartFraction 9 Over 2 x + 3 EndFraction

10x + 15 = 9(9)

Answer: Keep it simple

x =  

6.6

Length of  =  

16.2

 units

The value of x and one of the sides of the triangle are needed.

[tex]x=6.6\ \text{units}[/tex]

[tex]DE=16.2\ \text{units}[/tex]

[tex]CD=5\ \text{units}[/tex]

[tex]FD=9\ \text{units}[/tex]

[tex]DE=2x+3[/tex]

Finding CF

[tex]CF^2=CD^2+FD^2\\\Rightarrow CF^2=106\ \text{units}[/tex]

In triangle DEF

[tex]FE^2=DE^2+DF^2\\\Rightarrow FE^2=(2x+3)^2+81[/tex]

In triangle CFE

[tex]CE^2=CF^2+FE^2\\\Rightarrow (5+2x+3)^2=106+(2x+3)^2+81\\\Rightarrow (8+2x)^2=187+(2x+3)^2\\\Rightarrow 64+4x^2+32x=187+4x^2+9+12x\\\Rightarrow x=\dfrac{187-64+9}{32-12}\\\Rightarrow x=6.6\ \text{units}[/tex]

[tex]DE=2x+3=2\times 6.6+3\\\Rightarrow DE=16.2\ \text{units}[/tex]

Learn more:

https://brainly.com/question/17307037?referrer=searchResults

Ver imagen boffeemadrid